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Abstract 

Surveying coastal systems to estimate distribution and abundance of fish and benthic organisms 

is labor-intensive, often resulting in spatially limited data that are difficult to scale up to an entire 

reef or island.  We developed a method that leverages the automation of a machine learning 

platform, CoralNet, to efficiently and cost-effectively allow a single observer to simultaneously 

generate georeferenced data on abundances of fish and benthic taxa over large areas in shallow 

coastal environments.  Briefly, a researcher conducts a fish survey while snorkeling on the 

surface and towing a float equipped with a handheld GPS and a downward-facing GoPro, 

passively taking ~10 photographs per meter of benthos.  Photographs and surveys are later 

georeferenced and photographs are automatically annotated by CoralNet.  We found that this 

method provides similar biomass and density values for common fishes as traditional scuba-

based fish counts on fixed transects, with the advantage of covering a larger area.  Our CoralNet 

validation determined that while photographs automatically annotated by CoralNet are less 

accurate than photographs annotated by humans at the level of a single image, the automated 

approach provides comparable or better estimations of the percent cover of the benthic substrates 

at the level of a minute of survey (~ 50 m2 of reef) due to the volume of photographs that can be 

automatically annotated, providing greater spatial coverage of the site.  This method can be used 

in a variety of shallow systems and is particularly advantageous when spatially-explicit data or 

surveys of large spatial extents are necessary. 

 

 

 



Introduction 

The detection and interpretation of ecological patterns and processes depend on the scale 

observed (Levin 1992).  Mismatches in scale between observations and processes can lead to 

erroneous interpretations of the drivers of patterns in nature, making it imperative to consider 

multiple scales in study designs (Sandel and Smith 2009).  Unfortunately, the scale at which 

observations of nature are made is often dictated by logistical constraints rather than by the 

underlying biology or specific research questions (Lindenmayer and Likens 2010; Estes et al. 

2018).  The appreciation of scale and spatial configuration in marine reef systems has galvanized 

the emerging field of seascape ecology, the subtidal equivalent of landscape ecology (Pittman et 

al. 2011), leading to novel insights into marine ecology and management (Boström et al. 2011).  

Due to the focus on spatial processes, spatially explicit data are critical to this burgeoning 

framework (Pittman 2017).  With anthropogenic impacts affecting marine systems at a range of 

local (e.g., overharvesting and nutrient pollution) and global (e.g., climate change) scales 

(Bellwood et al. 2004; Zaneveld et al. 2016), new methodologies are needed for study on 

multiple scales and to integrate spatially explicit data from diverse sources (González-Rivero et 

al. 2020; Holbrook et al. 2022).  Ideally, new methods would be able to efficiently and accurately 

survey biological communities at fine taxonomic and spatial resolutions with the ability to scale 

up to cover larger spatial extents when necessary. 

A multitude of methodologies to survey subtidal communities have been developed that 

span the continuum from spatially-localized with high resolution to broader scales coming at the 

cost of coarser taxonomic resolution.  At the extremes, in situ subtidal surveys can identify 

individual species with high accuracy in small areas, while remote sensing techniques can 

encompass entire study regions but may only be able to distinguish a few classes of organisms 



averaged over relatively large areas (i.e., multiple m2) due to resolution limits (Hedley et al. 

2017).  Subtidal surveys can be both time- and labor-intensive, leading to estimates of 

community structure based on a limited number of observations or area sampled.  For example, 

fish surveys typically employ either a belt transect or a stationary point count method (Caldwell 

et al. 2016).  These sample fixed areas on the reef and require extensive replication to infer the 

density of patchily distributed and mobile fishes at larger scales (Colvocoresses and Acosta 

2007), although GPS-enabled timed swims and towed-diver methods have been employed to 

allow greater area to be covered (Richards et al. 2011; Beck et al. 2014; Rizzari et al. 2014).  

Methods for surveying cover of benthic taxa are similarly varied, though most utilize in situ 

point-count methods that are time-intensive in the field, or photoquadrats, which are easier to 

collect in the field but are time-intensive to annotate in the laboratory (Beijbom et al. 2015).  As 

with fish surveys, these methods ordinarily capture only small areas of the targeted ecosystem. 

Although there will always be tradeoffs in survey methods along the axes of efficiency, 

spatial coverage, and taxonomic resolution, advances in technology may reduce some of these 

tradeoffs by increasing the spatial coverage while maintaining or even improving efficiency and 

taxonomic resolution (González-Rivero et al. 2014; Griffin et al. 2017).  Recent advances in 

computer vision algorithms provide the ability to automatically detect a number of marine 

organisms from photographs and videos (e.g., Beijbom et al. 2015; Villon et al. 2018).  In 

benthic marine systems, these algorithms have been leveraged to help alleviate the time-

consuming work of manually annotating benthic photographs (Williams et al. 2019; González-

Rivero et al. 2020).  Different methods have been employed by researchers, but the CoralNet 

platform (Beijbom et al. 2015) is open source and commonly used in studies of marine 



ecosystems including coral reefs (Williams et al. 2019), temperate reefs (Griffin et al. 2017), and 

biofouling communities (Gormley et al. 2018). 

The CoralNet platform (coralnet.ucsd.edu) has been the subject of several evaluations in 

the recent literature (Beijbom et al. 2015; Williams et al. 2019).  These evaluations have revealed 

that CoralNet’s automatic annotations provide comparable estimates of benthic cover to human 

experts in a variety of systems (Williams et al. 2019).  Although these results are promising, 

prior assessments tended to focus on how well the automatic classifier performs compared to 

human annotations done on the same photographs, essentially testing how well CoralNet 

performs on data collected from traditional study designs where the intent is for experts to 

annotate most of the images.  Images typically take more time to annotate than to collect in the 

field, so studies and sample sizes are often designed around this rate-limiting step of expert 

annotation, termed the “manual-annotation bottleneck” (Beijbom et al. 2015).  While reducing 

this analytical bottleneck is certainly an advantage of the machine learning approach, we argue 

that the power of automatic annotation has yet to be fully realized.  Automating the annotation 

process can be used in tandem with the automated collection of large numbers of photographs to 

greatly improve the efficiency in the field and expand the spatial coverage of benthic survey data 

with limited loss of taxonomic resolution.  In this study, we build upon previous work by using 

CoralNet to automatically annotate hundreds of thousands of photographs.  This is many more 

than could practically be scored by a human, resulting in greater spatial coverage of the site, and 

potentially a more accurate description of the ecological community.   

To address the need for efficient, cost-effective methods to characterize fish and benthic 

communities across large areas, we describe novel methodology that leverages advances in 

machine learning to enable collection of paired, georeferenced survey data on both fish and 



benthic communities in shallow marine environments.  Briefly, a snorkeler swimming on the 

surface visually surveys conspicuous, mobile fishes while towing a float equipped with a GPS 

and a downward facing camera that captures images of the benthos.  The benthic photographs are 

later processed using CoralNet to automatically annotate hundreds of thousands of images.  

Although GPS-enabled fish surveys and automatic annotation of benthic photographs have both 

been utilized in the marine ecology literature (Beck et al. 2014; Beijbom et al. 2015), our 

approach combines these two data collection techniques into a single methodology conducted 

simultaneously by a single observer in the field, which enables questions to be addressed at 

larger spatial extents while maintaining fine spatial resolution.  Here we describe the materials 

used to build the float, field methodology for the paired fish and benthic surveys, the methods to 

synchronize the different data sources and georeference the surveys, as well as the process used 

to validate the accuracy of cover estimates of benthic substrates from CoralNet.  During our 

CoralNet validation, we specifically examine how well different numbers of manually- and 

automatically-annotated images estimate benthic cover based on a manually-annotated reference 

set of images.  Additionally, we compare results from the described GPS fish counts with those 

of a traditional, scuba-based fixed transect method to demonstrate that despite different 

methodology, the two methods provide similar estimates of the biomass and density of 

herbivorous fish functional groups and key carnivorous families. 

 

Materials and Procedures 

Study Site 



We collected data to assess and validate this method in June and July 2018 in the shallow 

lagoons (< 4 m) around the island of Moorea, French Polynesia (17.54°S, 149.83°W).  Moorea is 

a high volcanic island located in the central South Pacific with a perimeter of ~ 50 km and an 

offshore barrier reef that encloses a shallow lagoon.  The lagoon is characterized by a contiguous 

reef tract on the back reef just shoreward of the reef crest that transitions into scattered coral 

bommies interspersed with sand and coral rubble in the mid-lagoon.  Alongshore is a shallow 

fringing reef that in places is separated from the mid-lagoon by a deeper channel.  Moorea is the 

location of the National Science Foundation-funded Moorea Coral Reef Long Term Ecological 

Research (MCR LTER) site that has been collecting time series data on fish and benthic 

communities at six sites and two habitats nested within site (back reef and fringing reef) within 

the lagoon since 2004.  These time series indicate that some areas on the north and northeast 

sides of the island have been losing coral and gaining macroalgae recently, while coral cover in 

other areas of the island has remained relatively constant (Schmitt et al. 2019, 2021; Carpenter 

2020; Adam et al. 2021).  Thus, the lagoons currently consist of a patchy landscape with 

different benthic ecosystem states, ranging from predominantly sand and other low relief habitats 

to locations with greater amounts of hard substrate covered with varying degrees of coral and 

macroalgae. 

 

Float Construction and Field Methods 

To simultaneously survey fish and benthic assemblages over large areas in shallow subtidal 

habitats, we constructed a float that was towed behind a snorkeler conducting a fish count. The 

float captured photos of the benthos and obtained a GPS track for each survey.  The float was 

constructed by adding PVC crossbars (~ 70 cm long) to the bottom of an inflatable, ~ 60 cm 



diameter dive safety “inner-tube” float (JC Scuba, Inc., Warwick, Rhode Island, USA) to provide 

a stable attachment point for a GoPro Hero 5 Black camera (San Mateo, California, USA), which 

was oriented directly downward (Fig. 1a).  We also attached a small 1.4 kg dive weight to the 

PVC to stabilize the crossbars.  Inside the float, we placed a Garmin GPSMap 78 handheld GPS 

(Olathe, Kansas, USA) contained inside a waterproof case, which was set to record a track of 

georeferenced locations at 5 s intervals.  Prior to leaving the dock, the GPS was turned on, the 

GPS track was cleared, and the unit was placed into the waterproof case, remaining there until 

returning to the dock upon which it was removed from the case and the track was saved.  We 

chose this GPS unit because it is a newer model of a unit that was successfully used to 

georeference fish surveys in prior work (Beck et al. 2014), and GoPro cameras were chosen due 

to their low cost, ruggedness in the field, and wide implementation in a variety of underwater 

research projects involving photography, including benthic surveys (Koester et al. 2020) and 

photogrammetry (Nocerino et al. 2020).  The float was towed by a snorkeler via a 3 m long rope 

(the length is necessary to prevent turbulence from fin kicks impacting the quality of images; 

Fig. 1b).  The snorkeler wore a digital, waterproof wristwatch (Timex Ironman Classic 30; 

Middlebury, Connecticut, USA) whose time was synchronized to the internal time of the GPS 

every 48 hrs to account for slight drift in the watch time away from that of the GPS.  On the boat 

prior to beginning a transect, the GoPro was set to time lapse mode (Linear FOV, 0.5 s interval), 

and the observer began the time lapse, photographing the watch face (Fig. S1) for approximately 

10 s before attaching the GoPro to the float, attempting to ensure that the watch face was 

illuminated by sunlight to make identifying time in the photographs easier; because photos were 

taken at fixed increments, each subsequent photograph could later be associated with an exact 

time and thus with coordinates from the GPS track.  Each watch was set to produce a looping 



alarm at 1-min intervals to allow finer-scale binning of fish counts (these 1-min long bins are 

hereafter referred to as “transect segments”), with the alarm signaling the beginning of a new 

transect segment. To conduct the fish survey, the snorkeler swam for up to 30 min at a speed of 

roughly 10 m per min, writing fish observations in a new row on a datasheet based on the current 

transect segment. Surveys were conducted between the hours of 10:00 and 16:00 on days of no 

rain and low cloud cover to limit differences in fish behavior among surveys. A consistent swim 

speed within transect segments is necessary to limit bias in the resulting data; swimming slowly 

over one area for half of a segment and swimming quickly in the other will increase the percent 

cover estimates from the slowly-swum area relative to the quickly-swum area.  Although this can 

be corrected by sub-sampling images taken a set distance apart from one another after the 

photographs are georeferenced, maintaining a similar swim speed in the field provides the easiest 

solution to this problem.  Different swim speeds between transect segments should not suffer this 

bias due to the fish surveys being standardized to the area of each transect segment and the 

benthic surveys being standardized to the same number of points between segments.  While the 

observer counted fish, the GoPro was passively taking thousands of images of the benthos, and 

these photographs are clear enough to identify key reef substrates and benthic organisms (Fig. 

1c,d). At the end of each survey the snorkeler swam an additional 30 s forward to capture 

photographs of the benthos in which fish were counted in the final minute of the survey.   

The surveys allow coverage of a large area within relatively short time periods. For 

example, in 2018, our island-wide campaign in Moorea surveyed approximately 225,000 m2 of 

reef in only ~ 67 person-hours of sampling (Fig. 2a).  We surveyed different lagoon habitats, 

including the mid-lagoon, fringing reef, along the shallow edges of reef passes, and just behind 

the reef crest. (Fig. 2b).  The snorkeler counted and visually estimated the total length (TL) to 



the nearest cm of each fish > 10 cm from a fixed species list (57 taxa, including mobile 

herbivores and important fishes in the local fishery; Table S1; Rassweiler et al. 2020) in a 5 m 

wide swath.  We did not include small individuals or certain cryptic taxa (e.g., Synodontidae, the 

lizardfishes) in this species list due to low confidence in our ability to accurately estimate them 

from the surface while swimming at our speed of 10 m per minute.  There are tradeoffs in the 

amount of area covered and the taxa surveyed; by focusing on larger, more mobile individuals 

and taxa, more area can be covered, while including smaller, more cryptic individuals would 

force a slower swimming speed to properly estimate their abundances.  The approach described 

here is appropriate for research questions focused on larger fish.  Binning these counts by minute 

leads to 30, 1-min-long transect segments, which can be used to obtain fine-scale spatial 

information (~ 10 x 5 m surveyed per transect segment) on the location of counted fishes (Fig. 

2c).  This technique generated fish counts and fish sizes, paired with 90 benthic photographs 

taken during every minute of fish survey.  

  

Georeferencing Survey Data 

Data from the fish and benthic surveys were georeferenced using the recorded times for the GPS.  

GPX (GPS Exchange Format) tracks from the GPS were accessed using the “PlotKML” package 

in R (Hengl et al. 2015), and the times associated with each point of the track were converted to 

local time.  We assigned a time to every photograph in a transect by extrapolating times from a 

photograph of the watch face taken at the beginning of the transect, calculated based on a 

constant interval between each photograph in the time lapse.  We ran tests to identify the true 

GoPro timelapse interval and to validate our method by recording a digital watch until the GoPro 

battery expired and identifying the average number of photographs taken during this time period.  



These tests revealed that the GoPro’s nominal 0.5 s interval actually took a photo every 2/3 of a 

second, and by assuming this value as the interval, we found that by the end of a time lapse trial 

(trial length range: 76.7 – 85.5 minutes), the mismatch between the time we associated with the 

photographs and the true time on the watch face was less than 1 s in all trials (n = 3).  This 

behavior was consistent across multiple GoPro cameras.  The timing of the fish transect 

segments were defined by the known fixed 1-min intervals.  However, because the GPS and 

camera were towed behind the observer, and fish were counted just ahead of the observer, we 

performed a spatial correction to match the GPS coordinates more closely with the locations the 

fish surveys were conducted on the reef.  For the fish data, we took the beginning and end 

coordinates for each transect segment recorded by the GPS and calculated a directional bearing 

using the “geosphere” package in R (Hijmans et al. 2017) and used this to project the coordinates 

from the GPS 4 m forward (3 m for the float to observer and 1 m for the distance from the 

observer’s waist to their eyes) along this bearing.  The two points at the beginning and end were 

used to calculate a rectangular polygon 5 m wide to identify the observation window (Fig. 2c).  

To match the benthic photographs with this shift, photos associated with each fish count minute 

were lagged 22 seconds behind the fish counting, because this on average equates to a 4 m 

distance forward (i.e., the first image associated with a fish count minute beginning at 12:00:00 

would be the image taken at 12:00:22, and the last associate image would be taken at 12:01:21).  

Although we could have matched the benthic photographs and the fish surveys more directly by 

associating photographs with a transect segment based on whether their coordinates were located 

within the observation polygon of each minute, this would have led to different numbers of 

photographs assigned to each transect segment.  As our calculated locations on the reef are 

estimates within a few meters due to the error of our handheld GPS, we decided that a consistent 



number of replicate images within a minute was more important than slightly more accurate 

spatial matching with the fish survey observation window.  However, depending on specific 

research questions (such as when precise location data are imperative), it is possible to aggregate 

photographs based on location rather than time by selecting photographs that fall within the fish 

survey polygons. 

Sample R code and associated documentation to perform these procedures can be found 

in the Supplemental Information. 

 

CoralNet Training and Benthic Data Analysis 

Our 2018 sampling campaign in the lagoons of Moorea generated 330,660 photographs of the 

benthos across 3966 transect segments nested within 152 fish survey transects (each up to 30 min 

in duration).  To begin analysis of the benthic photographs, two photographs from every transect 

segment were uploaded to CoralNet 1.0 (coralnet.ucsd.edu; Chen et al. 2021), an online image 

repository and machine learning automatic classifier tool (Beijbom et al. 2015; Williams et al. 

2019), for a total of 7932 images.  Trained researchers scored 30 stratified random points per 

photograph; points were not placed within 15 % of the edges of photographs, as objects near the 

edge can be out of focus due to the fisheye lens of the GoPro camera.  Using a different camera 

may allow points to be accurately annotated up to the edges of the photograph, but as this was 

done across all photographs, we do not expect it to introduce any bias in this case.  We chose 30 

points as an acceptable tradeoff between time required to annotate an image and the precision of 

percent cover estimates for each image.  Scoring only 30 points per image increased the number 

of images we could process; utilizing more images rather than more points per image has been 

found to improve statistical power in previous studies (Houk and Van Woesik 2006; Perkins et 



al. 2016).  Each point was classified by the observer into one of 36 benthic substrate categories, 

including several categories representing points in which the substrate could not be identified 

(e.g., motion blur, bubble interference, too deep, etc.), but ultimately only 17 of the 36 were 

common enough to be included in our validation procedure (Table 1).  The 19 of our original 

categories that were not included in the validation procedure only comprised 1.3% of the total 

number of points used to train the CoralNet classifier, so although these are a high number of 

categories, they represent rare occurrences on the reef.  These categories were selected because 

they represent the dominant benthic taxa and morphotypes present in the lagoon of Moorea, 

comprising ~95% of the coral cover in available MCR LTER lagoon data in 2018 (Edmunds 

2022), but researchers in higher-diversity systems will likely require more categories, which may 

negatively impact the ability of the CoralNet system to distinguish among taxa. 

We used the two annotated images per transect segment to train CoralNet’s automatic 

classifier.  This training triggers automatically without additional user input once 20 images are 

annotated by a human and continually attempts to retrain to greater accuracy as more images are 

annotated.  During training the classifier uses the images annotated by a human to learn how to 

identify substrates automatically, and once this training is completed it begins making guesses on 

points from newly uploaded images.  Our classifier achieved 84% average accuracy at the point 

level across all substrates based on CoralNet’s internal metrics, and this final classifier was used 

to automatically annotate photographs for the validation procedure described in the Assessment. 

 

Assessment 

Comparison of GPS-Enabled Snorkel Fish Surveys to Fixed-Area SCUBA Surveys 



To compare the biomass and density values of the fish counts with more commonly used 

methods, we utilized the MCR LTER time series data on the lagoon fish community, which are 

obtained from scuba-based, fixed-area permanent transects (n = 4, 50 x 5 m transects per site) at 

six back reef and six fringing reef locations located around the island (Brooks 2019).  We 

compared data on fish abundance and biomass obtained using our method with data collected in 

the same year (2018) by the MCR LTER project.  To make the comparisons as similar as 

possible, we filtered both datasets to include only back reef habitats and the LTER dataset to 

only include individuals greater than 10 cm TL of the species we counted.  Because we used a 

truncated species list in our method, we limited comparisons to functional groups of herbivorous 

fishes (browsers, scrapers, excavators, grazers, and detritivores) that are of ecological interest 

and often aggregated in this way (Han et al. 2016; Schmitt et al. 2021).  Herbivores were selected 

because as a group they constituted the majority of biomass observed in the back reef habitat in 

2018 when sharks are excluded (~58% of biomass; Brooks 2019).  Due to their tendency to form 

large, highly mobile and spatially patchy schools, we excluded the grazer, Acanthurus triostegus, 

from both datasets to avoid a single school influencing the comparisons (Han et al. 2016).  We 

then selected transect segments from our 2018 sampling (n = 483 total) that were within 500 m 

of the center of the LTER fixed transects (n = 5 back reef sites, because we did not have transects 

located within 500 m of one of the LTER sites), which helped minimize potentially confounding 

effects driven by spatial heterogeneity of the reef environment.  Values for average biomass of 

each functional group from the datasets at each location were calculated by converting observed 

lengths to biomass using length-weight relationships retrieved from online and published sources 

(Kulbicki et al. 2005; Brooks & Adam 2019).  We plotted the mean biomass and density of each 

functional group in both methods, and we calculated Pearson’s correlations using all functional 



groups for both metrics.  Additionally, we show how the mean biomass and density (calculated 

as mean at the site level, n = 5) of each functional group compares between the methods.  We ran 

linear models with biomass and density as the response variables and method and functional 

group as interacting explanatory variables and performed an ANOVA to determine the effect of 

method, functional group, and their interaction on both metrics.  To test the applicability of the 

method to other taxa, we used the same approach to evaluate four non-herbivore families in 

which all species were counted in both our method and the LTER surveys (Mullidae, Serranidae, 

Carangidae, and Lutjanidae). These species are all mobile and ambush predators.   

 

CoralNet Validation 

Because we captured many more images than can be realistically hand-annotated by even 

the best resourced groups of researchers, we wanted to examine whether the automated classifier 

could replace human annotators in estimating the percent cover at the scale of a transect segment 

(roughly 50 m2 of reef).  The accuracy of estimates at this scale are a function both of point-by-

point accuracy in identification of substrates, and of the number of images that are scored, which 

raises a potential tradeoff between the automated and the human approach.  The human is 

equally or more accurate on a point-by-point basis, but the manual-annotation bottleneck limits 

the number of images processed resulting in low spatial coverage of the site, while the algorithm 

is often less accurate at the point level but can score enough images to nearly capture the entire 

benthic makeup of the transect, potentially providing a better representation of the ‘true’ percent 

cover of the site (e.g., Griffin et al. 2017). 



To compare the ability of humans and the algorithm to estimate the benthic composition 

of the reef, we randomly selected 50 transect segments, 40 selected at random from unique full 

transects conducted on the back reef and 10 selected from each of 10 fringing reef transects.  We 

limited our analyses to transects from fringing and back reef habitats because of the relatively 

consistent depths (< 3 m). We then allocated 21 of the 90 photos from each transect segment to 

be annotated by humans and the remaining 69 photos to be automatically annotated by CoralNet.  

The manually-annotated photos were evenly spaced across the minute and were scored by the 

same group of trained human annotators that trained the classifier.  The other 69 photos were 

automatically annotated using our previously trained classifier. 

We randomly selected 12 of the manually-annotated images from each transect segment 

to calculate the percent cover of each substrate at the site. This was used as a reference set for 

comparison with other sets of manually-annotated and automatically-annotated images from the 

same transect segment to assess the increase in accuracy that could be achieved by annotating 

larger numbers of images.  We developed a resampling procedure to compare the effectiveness 

of using different numbers of manually-annotated images versus automatically-annotated images 

at estimating this reference percent cover within each transect segment.  First, we randomly 

selected one of the 9 remaining images scored by a human for all 50 transect segments (i.e., an 

image not in the reference set), and calculated the mean percent cover of the substrate of interest 

for each transect segment. We then generated a regression using the mean percent cover in each 

transect segment (in this example based on a single hand-annotated image) to predict the percent 

cover calculated from the set of twelve reference images (Fig. S2).  If the sample estimate 

perfectly predicted the percent cover from the reference set in all transect segments, the r2, slope, 

and intercept of this regression would be 1, 1, and 0, respectively, thus the closer the observed 



results are to these values, the more accurately the sample predicted the reference set.  For each 

substrate of interest, we repeated this process 1000 times for different numbers of manually-

annotated images (n = 1 to 8) and automatically-annotated images (n = 1, 2, 4, 8, 16, 32, 64) 

using different sample images in each replicate (Figs. S3-S5).  To ensure that observed results 

were not driven by the details of the randomly chosen reference set, this process was repeated an 

additional 100 times with different randomly chosen reference sets, resulting in n = 100,000 

regression results for each substrate for each number of manually-annotated and automatically-

annotated images.  Importantly, this process uses separate images to calculate the percent cover 

in the reference set and the sample set in each iteration, which allows us to infer how well 

different numbers of images from each classification method perform at estimating percent cover 

in an unknown reference set, and thus how accurately they can describe variation in ecosystem 

state at this spatial scale.  We performed this analysis on each class of substrates and organisms 

identified, as well as on aggregated classes that are more likely to be used in broader-scale 

ecological analyses (Table 1).  It is relevant to note that these aggregated classes were combined 

post-annotation from the same CoralNet source (i.e., we did not train new classifiers on 

aggregated label sets) and training a new classifier directly on the combined categories may have 

increased the performance (Williams et al. 2019).  

For each regression generated in the resampling procedure, the r2, slope, and intercept 

were determined, and for visualization, the mean r2 and 95 % quantiles of these were plotted for 

each substrate across each number of manually- and automatically-annotated images.  As a 

summary, we plotted just the mean r2 values for 8 manually-annotated images, 8 automatically-

annotated images, and 64 automatically-annotated images for each substrate to visualize the 

mean effects for key values of our analyses.  



As one of the main benefits of using the algorithm to automatically annotate images is the 

reduction in time spent processing images, we wanted to compare how many person-hours it 

would take to annotate one hundred 30-min long transects using our method versus the manual 

annotation approach.  To maintain consistency with our evaluation, we performed these 

calculations using 8 manually-annotated and 64 automatically-annotated images per transect 

segment.  We assumed that it would take a human two minutes on average to annotate an image 

in our dataset (a speed equivalent to that of an experienced annotator).  We then assumed that 

image processing takes approximately 20 minutes per 5000 images in administrative time 

(uploading images, downloading data, etc.) based on records from our usage of the CoralNet 

platform.  For the CoralNet approach, we assumed that it took 3485 images to train the classifier 

(as it initially did in our project) and that these training images are not used in the final dataset, 

thus the time spent training the classifier is a time “cost” and represents an intercept in a model 

of time spent per transect.  Due to additional effort required to upload and process the higher 

volume of images, we assumed that it takes approximately 30 minutes per 5000 images in 

administrative time.  Although CoralNet does not instantly annotate the images, we did not 

consider this waiting time in the calculations, because this does not represent human time 

required to generate the data, although such waiting is relevant for project timelines.  These two 

functions were plotted and we calculated the intercept where the two are equivalent in efficiency.  

R code and a more detailed walkthrough of this validation procedure are included in the 

Supplemental Information. 

All statistical analyses and maps were created using R 3.6.0 (R Core Team 2019). 

 

Results 



Comparison of GPS-Enabled Snorkel Fish Surveys to Fixed-Area SCUBA Surveys 

Despite significant differences in methodology between our GPS-enabled snorkel surveys and 

fixed-area scuba transects conducted in 2018 by the MCR LTER project, the two methods 

provided similar results with respect to the biomass and density of the 5 major functional groups 

of herbivorous fish (Fig. 3).  When comparing our snorkeling transects situated within 500 m of 

each of the LTER back reef sites, both the biomass (r = 0.64, p < 0.001; Fig. 3a) and density (r = 

0.54, p < 0.01; Fig. 3b) were positively and significantly correlated based on Pearson 

correlations.  There was some tendency for the GPS-enabled counts to yield a greater biomass of 

grazers and scrapers, and for the fixed-area scuba counts to feature a greater density of 

excavators (Fig. 3c,d).  However, the ANOVA test showed that while average biomass and 

density of fish functional groups differed (p < 0.005 for both metrics), there was no significant 

effect of sampling method on either metric, nor a significant interaction between method and 

functional group.  Results for the four carnivorous families were similar to our analysis of 

herbivorous groups, with both biomass (r = 0.75, p < 0.001; Fig. S6a) and density (r = 0.78, p < 

0.001; Fig. S6b) being positively correlated between the two methods.  Our snorkel method 

tended to find a greater biomass of Mullidae (Fig. S6c), while the fixed-area scuba counts found 

greater density of Serranidae (Fig. S6d). However, the ANOVA results showed the same pattern 

as for herbivores; the biomass and density of the carnivore families differed (p < 0.005), but 

there were no significant effects between sampling methods or the interaction of sampling 

method and family.  Overall, differences between methods were minor, particularly given the 

differences in the area covered by the two types of surveys.  

 

CoralNet Validation 



For all substrates, the accuracy in estimating the reference image set increased as we used more 

images to estimate benthic cover within a transect segment; the mean r2 value of comparisons 

with the reference dataset increased and approached 1, and the variance of those r2 values 

decreased (Figs. 4a, Figs. S7-27; Table 2).  The automatically-annotated images tended to 

perform similarly to the manually-annotated images across the range of values where both 

manually- and automatically-annotated images were tested (n = 1 to 8 images) (Figs. 4a, Figs. 

S7-27).  However, when 16 or more computer-annotated images were used, performance 

continued to increase for most substrates.  For brevity, only the results for a single substrate (live 

coral) are depicted in Fig. 4, but other substrates show a qualitatively similar pattern and are 

provided in the Supplemental Information (Figs. S7-27).  In addition to providing greater 

accuracy for many substrates, using CoralNet to annotate 64 images per minute represents 

significant time savings over annotating 8 images per minute by a human when many transects 

were surveyed (Fig. 4b).  The intersection of these lines occurs at approximately 447 transect 

segments, representing just under 15 full-length (30-min) transects; below this sampling effort 

manual annotation by humans would be quicker, but beyond this level the CoralNet approach 

provides significant time savings, increasing dramatically as the number of transects becomes 

larger (Fig. 4b).   

When 8 manually- and automatically-annotated images were compared, the 

automatically-annotated images outperformed (i.e., had a higher mean r2 than) the manually-

annotated images in 13/17 (76.5%) of substrates.  When 64 images per minute were 

automatically annotated, CoralNet’s ability to estimate the percent cover of the reference image 

set was boosted and it outperformed the 8 manually-annotated images in 16/17 (94.1%) 

substrates (Fig. 5a; Table 2).  The lone substrate that the manually-annotated images 



outperformed the automatically-annotated images was non-branching Acropora.  Non-branching 

Acropora is rare on the reef, so this substrate tends to be misidentified as other corals by the 

algorithm, particularly branching Acropora and Pocillopora, likely due to a low amount of 

training data.  Substrates common on the reef (and thus in the training data) were generally 

estimated better (i.e., had a higher mean r2) than rare substrates, and this was true for both 

manually- and automatically-annotated images (Fig. 5a).  When substrates were aggregated into 

four major groups (Soft Substrate, Hard Substrate, Macroalgae, Coral), the overall patterns 

remained the same (Fig. 5b; Table 3).  All four aggregated substrate categories had a mean r2 

value of greater than 0.85 when scored by 64 automatic images and outperformed estimates 

resulting from 8 manually-annotated images (Fig. 5b). 

 

Discussion 

We described a novel methodology for collecting paired, georeferenced surveys of fish and 

benthic communities simultaneously by a single observer in a cost-effective, time-efficient 

manner. We also showed how the resulting data could be efficiently and accurately processed to 

determine benthic community composition.  After an initial investment in time (to train the 

CoralNet classifier) and cost (to construct the camera float – roughly $700 USD per float), this 

method allows a small group of researchers to significantly scale up surveys in shallow subtidal 

systems with minimal marginal cost beyond the time spent in the field.  The method is 

specifically designed to use materials that are lightweight, easy to assemble, and cost-effective, 

and it accomplishes this with little sacrifice to accuracy.  However, if greater accuracy (such as 

increased taxonomic resolution or more precise locational data) is required, the framework 

presented here can easily be modified to achieve those goals.  For example, use of a differential 



GPS rather than the handheld GPS we employed could potentially yield cm-scale georeferencing 

accuracy, and upgraded camera systems could obtain higher quality images, improving the 

classification potential of CoralNet.  Even more sophisticated elaborations can be imagined, such 

as direct circuitry linking the GPS and the camera, eliminating the need to assign a location to 

each photograph by extrapolating time based on the time lapse interval.  Thus, our already-

promising assessment of the method can be thought of as a conservative estimate of the potential 

for this general approach. 

Our methodology is an extension of prior work investigating the statistical properties of 

point count analyses, which found that increasing the number of images provides an 

improvement in accuracy at estimating benthic cover, particularly in heterogeneous 

environments (Perkins et al. 2016).  While using computer vision algorithms to scale up surveys 

is not a new idea in the ecological literature (e.g., González-Rivero et al. 2016; Griffin et al. 

2017), our study provides an explicit test of the tradeoffs between using different numbers of 

manually- and automatically scored images to assess unknown benthic cover at ecologically-

relevant scales.  Our findings suggest that leveraging computer vision algorithms can do more 

than simply alleviate the “manual-annotation bottleneck” from photoquadrat ecological surveys 

by simultaneously increasing the scale and accuracy at which ecological data can be collected.  

Because the accuracy improves with most categories as more photographs are annotated, and 

more photographs are efficient to both collect and analyze in a computer vision framework, our 

method scales up to cover greater area than traditional surveys with little-to-no tradeoff in 

efficiency in terms of cost or accuracy.  Therefore, our validation procedure is more than just an 

assessment of the CoralNet system. We show that our method unlocks new data collection 

options, both the paired fish and benthic surveys demonstrated here and potentially through the 



use of different methods specific to benthic data, such as autonomous camera systems (e.g., 

Raber and Schill 2019). 

Our validation procedure indicates that the CoralNet system performs well when 

estimating cover of the benthos compared to a set of reference images taken from the same 

transect segment.  However, it is worth noting that these reference images were collected using 

the same surface-borne camera, thus the estimates of benthic cover derived from the reference 

set are subject to any limitations of the photos themselves, including low resolution at greater 

depths and the inability to discern cryptic benthic classes.  Further validation could be performed 

by using in situ validation of benthic substrates or through comparing these surface-borne 

photographs to traditional SCUBA-based photoquadrats.  Because of the cost of sampling 

benthic habitats, many research projects have focused narrowly on a single habitat type (e.g., 

structurally similar hard bottom habitats).  The efficiency of our method permits sampling a 

wider array of habitats with the same effort, potentially giving a more realistic description of the 

overall seascape.  For example, we record a much higher (and likely more representative) 

percentage of sand and coral rubble in our transects compared to the LTER surveys (52.9% vs. 

31.1%) which were intentionally stratified to be in areas dominated by hard-bottom habitat 

(Carpenter 2020).  Sand cover is likely an important variable to consider when describing fish 

assemblages because many key fish groups respond to physical structure (Holbrook et al. 

2002a,b; Schmitt et al. 2007).  Researchers in areas with greater resources and access to airborne 

drones, LiDAR surveys, or high-quality remote sensing products may be able to use those data 

sources to estimate reef structure and sand across greater extents (e.g., Casella et al. 2017; Collin 

et al. 2018), but our method provides these data at the same scales as the associated fish surveys 

with relatively low additional time and monetary investment. Further, many remote sensing 



techniques classify individual pixels to a single class (and may have difficulty distinguishing 

between certain reef taxa, such as coral and brown algae), so our continuous percent cover 

estimates provide useful information that these methods in their current state cannot. 

Although our methods were developed and validated in a shallow coral reef system, the 

methodology described is modular and the different pieces can be isolated and used for other 

purposes.  For example, the georeferenced fish survey methods could be used for any shallow-

water system where visual estimates are used, and our method of aggregating photographic data 

is even more broadly applicable.  One application could be the development of autonomous 

surface vehicles that take similar surface-borne photographs to map other shallow subtidal 

systems (Raber and Schill 2019), or it could be used to generate ground-truthed field data to 

improve satellite-derived habitat classifications (Roelfsema and Phinn 2010).  We chose to 

aggregate at the level of a minute of swimming, but finer or broader aggregations can be made, 

depending on the level of precision versus spatial coverage required. 

 

Considerations and Limitations 

Utilizing this method unlocks the ability to address ecological questions at larger spatial scales 

than traditional site-based methods, but this comes with several considerations, tradeoffs, and 

limitations.  The end product is a dataset of spatially-explicit transect segments. While the 

collection of segments can cover an extensive stretch of reef, each segment represents a fairly 

small area, describing benthic cover and fish abundance therin.  Considering the area of these 

transects segments is small and there are up to 30 per transect, they can be aggregated into 

coarser units of replication to address ecological questions related to scale (e.g., a multiscale 

approach) and can be layered with other spatially-explicit data sources, such as bathymetry, to 



explore distributions of organisms or as predictor variables in other analyses (Pittman & Brown 

2011).  One important concern moving forward would be that of autocorrelation; although the 

lowest unit of replication are individual transect segments, they are adjacent along a transect and 

thus do not represent statistically independent observations (Legendre 1993).  Whether this is 

merely an issue that needs to be accounted for or it is used to elucidate additional properties of 

the system depends on the research question (Legendre 1993; Lennon 2000; Diniz-Filho et al. 

2003), but in any case, it should be considered when designing a study that implements the 

method described in this article. 

In addition to the implementation concerns above, there are more direct limits to its 

application in the field.  The most obvious limitation is that of depth; benthic substrates at depths 

below ~ 2-3m become more difficult to discern from the surface, even in the clear waters of our 

coral reef system.  It is for this reason that we limited our analysis to fringing and back reef 

habitats.  We had collected some data from deeper, steeply sloping reef passes and fringing reefs 

but excluded these due to low confidence in benthic characterization.  However, for many coastal 

marine systems, such as shallow lagoon habitats and seagrass beds, the shallower depths are 

relevant.  For example, in our surveys, ~89% of total transect segments (i.e., before removing 

those that were too deep) had a mean depth shallower than 2 m, with ~98% being shallower than 

3 m, and LiDAR bathymetry of Moorea shows that ~81% of the reef within the lagoons is 

shallower than 3 m.  In our data, transect segments between 2-3 m had similar total percent cover 

for most substrates to transects shallower than 2 m, suggesting that the identification methods 

remained reliable down to 3 m (Table S2).  It is possible that estimating percent cover deeper 

than 3 m may be possible depending on local taxa and water clarity, but we do not have the 



ability to examine these depths with our current data and therefore offer a conservative 

recommendation of utilizing this approach in areas shallower than 3 m.  

Even in shallower water, the ability to fully sample both fish and benthic communities is 

limited due to our faster swim speed compared scuba-based survey methods and due to the 

location of the researcher at the surface.  We chose to swim at a target speed of 10 m per minute 

because this quicker, more mobile approach allows better quantification of rare and large fish 

species which were of primary concern for our research questions and tend to be 

underrepresented in traditional surveys (Richards et al. 2011).  This speed could be slowed to 

focus on surveying smaller individuals or different taxa.  But even with a slower swim speed, it 

seems unlikely that proper quantification of cryptic species or smaller individuals will be 

possible given the position of the observer and camera at the surface, due to cryptic fishes being 

obscured within the reef matrix.  These limitations could be overcome in some situations if a 

scuba diver working at depth pulled a GPS float deployed at the surface. 

Considering that the surveys are conducted from the surface, conditions on the surface 

can influence the quality of data collected.  Notably, strong wind or currents (which are 

predominantly wave-driven in our system) can push the float around so that it is not directly 

behind the researcher, leading to mismatches of a few meters in the georeferencing of the 

surveys.  If conditions are too rough, the researcher must focus too much on maintaining 

direction and speed, which can impact their ability to properly survey fishes.  This caused us to 

avoid collecting data when winds were > ~18 knots and when swells were > 2.5 m on the reef 

crest behind which we were surveying (with occasional cancellations at values weaker than those 

based on local conditions).  Turbidity in the water column could also influence the quality of 

data collected.  We found that the auto white balance of our GoPro cameras was sufficient to 



capture quality photographs of the benthos as long as visibility was high enough to conduct a fish 

survey, although higher turbidity would likely reduce the depths this method is applicable even 

further.  Turbidity was not an issue for us most of the time and was only an issue nearshore, but 

we did have to cancel a survey due to visibility concerns (horizontal visibility < ~5 m) when we 

attempted to survey the fringing reef after a rainstorm. 

Additionally, although our results indicate that the CoralNet system performs well on our 

surface-borne photographs, we caution against moving forward with automatic annotation of 

entire datasets without first undergoing a validation procedure in each system.  Our results 

demonstrate that the benthic photographs perform well in Moorea, but this is a relatively low 

diversity system and higher diversity areas may require additional modifications to properly 

survey.  These modifications may include a slower swimming speed to properly enumerate a 

greater diversity of fishes, or it may require more training of the benthic classifier to properly 

identify increased diversity on the benthos than was necessary in Moorea’s lagoons.  A properly 

trained source can perform well under similar conditions it was trained (i.e., based on our 

source’s performance across the different habitats of Moorea, we have confidence that it would 

do well in the lagoons of neighboring Tahiti), but it would likely require extensive training or 

starting fresh if applied to a location with different taxa (e.g., the Great Barrier Reef).  Thus the 

applicability to new locations depends on the local taxa and conditions.  In our experience, the 

CoralNet system can be retrained and expanded to include additional benthic categories if the 

community changes within a system.  For example, in subsequent work with the CoralNet 

system after a bleaching event in 2019 we were able to add bleached corals to a new CoralNet 

automatic classifier by uploading additional photographs with bleached corals present and the 

associated manual annotation files to add these categories to the CoralNet source.   



To assist with the hurdle in performing site-specific validations, we provide R code and a 

straightforward, general process for conducting this validation.  Our validation procedure 

requires some additional time investment, with 21 photographs per minute used in the validation 

procedure to be manually-annotated (n = 1050 images for the 50 transect segments in this study), 

but this is small compared to the number of photographs needed to initially train the classifier 

and the long-term efficiency achieved once validation is completed (Fig. 4b).  Not only does 

independent validation allow estimates of accuracy and bias uniquely tailored to each system, but 

it also ensures that some human expertise is involved in the process.  Although here we argue for 

increased automation in the annotation of benthic imagery, humans should remain involved 

throughout the process in some capacity (Portelli et al. 2020).  Without proper validation and/or 

spot-checking of data by a trained human observer, the procedure could generate erroneous data, 

either due to human error during processing steps or poor performance by the computer vision 

system. 

Summary 

Here we present a novel methodology that allows a single user to simultaneously conduct 

georeferenced surveys of fish and benthic communities with minimal material and time 

investment.  We demonstrate that both components of the method provide accurate estimations 

of the fish abundance/biomass and benthic cover of conspicuous categories in a shallow coral 

reef system.  The spatially-explicit nature of the data allows straightforward layering with other 

spatial data sources, and the binning of transects into minute-long segments enables fine-scale 

modeling that can be aggregated at different scales depending on research needs.  Further, 

aspects of this methodology could be combined with existing subtidal survey approaches (e.g., 

González-Rivero et al. 2014) to expand the depths accessed.  We believe our method fills a 



distinct and useful gap within the pantheon of sampling techniques, falling between fixed-area 

surveys and remote sensing along the continuum of tradeoffs in area sampled and taxonomic 

resolution.  While the method we describe cannot fully replace traditional monitoring protocols 

that are able to survey entire benthic and fish communities, particularly if smaller or cryptic taxa 

are the focus of interest, it could be widely-implemented in research programs where the 

increased spatial coverage offered or the ability to obtain georeferenced surveys outweigh the 

need for fine-scale taxonomic information.  

 

Data Availability Statement 

The version of data and code referenced in this study are archived and openly available in 

Zenodo at http://doi.org/10.5281/zenodo.7920817.  The associated code may be updated in the 

future, and the latest version can be found in the author’s Github at 

https://github.com/SMillerTime57/GPS_fish_benthic_surveys. 

 

Author Contribution Statement 

SM, TA, SH, RS, and AR conceived the method.  SM, TA, and DC collected field data.  SM, 

AK, and AR led photographic analysis.  SM wrote code and led the writing of the manuscript.  

All authors contributed critical feedback throughout the development of the method and the 

validation procedures, assisted with the writing of drafts, and approved the final manuscript. 

 

Acknowledgements 

https://github.com/SMillerTime57/GPS_fish_benthic_surveys


We gratefully acknowledge the team at CoralNet for the creation of the tool and their assistance 

throughout this project.  We thank A. Turner, L. Turner, A. Siceloff, P. Bengston, and J. Baker 

for their assistance in annotating images, K. Kopecky for assistance in the field, and S. Lester for 

helpful discussions while developing the procedures.  This work was funded by NSF BCS 

1714704 and OCE 1637396, and the CoralNet platform was funded through various grants from 

NOAA and NSF.  We thank the Moorea Coral Reef LTER site and the University of California 

Gump Research Station for logistic support, particularly A.J. Brooks for helpful discussions 

regarding the LTER fish surveys.  Research was completed under permits issued by the 

Territorial Government of French Polynesia (Délégation à la Recherche) and the Haut-

commissariat de la République en Polynésie Française (DTRT) (Protocole d'Accueil 2015-2018); 

we thank them for their continued support.  The authors disclose no conflicts of interest. 

  



References 

Adam, T.C., D.E. Burkepile, S.J. Holbrook, R.C. Carpenter, J. Claudet, C. Loiseau, L. Thiault, 

A.J. Brooks, L. Washburn, and R.J. Schmitt. 2021.  Landscape-scale patterns of nutrient 

enrichment in a coral reef ecosystem: implications for coral to algae phase shifts. Ecol. 

Appl. 31(1): e02227. doi:10.1002/eap.2227. 

Beck, H.J., D.A. Feary, W.F. Figueira, and D.J. Booth. 2014. Assessing range shifts of tropical 

reef fishes: a comparison of belt transect and roaming underwater visual census methods. 

Bull. Mar. Sci. 90: 705-721. doi:10.5343/bms.2013.1055 

Beijbom, O., P.J. Edmunds, C. Roelfsema, and others. 2015. Towards automated annotation of 

benthic survey images: variability of human experts and operational modes of 

automation. PLoS ONE 10(7): e0130312. 

Bellwood, D.R., T.P. Hughes, C. Folke, and M. Nyström. 2004. Confronting the coral reef crisis. 

Nature 429: 827-733. 

Boström, C., S.J. Pittman, C. Simenstad, and R.T. Kneib. 2011. Seascape ecology of coastal 

biogenic habitats: advances, gaps, and challenges. Mar. Ecol. Prog. Ser. 427: 191-217. 

Brooks, A.J. 2019. MCR LTER: Coral Reef: Long-term population and community dynamics: 

Fishes, ongoing since 2005. knb-lter-mcr.6.58. 

doi:10.6073/pasta/a667eed481d9743c69c4209f6479acb4 

Brooks, A.J., and T.C. Adam. 2019. MCR LTER: Reference: Fish taxonomy, trophic groups and 

morphometry. knb-lter-mcr.6001.6. 

doi:10.6073/pasta/f6feeebdbe44f3865ce4cd233a744b83 



Caldwell, Z.R., B.J. Zgliczynski, G.J. Williams, and S.A. Sandin. 2016. Reef fish survey 

techniques: assessing the potential for standardizing methodologies. PLoS ONE 11(4): 

e0153066. 

Carpenter, R., and Moorea Coral Reef LTER. 2020. MCR LTER: Coral Reef: Long-term 

population and community dynamics: Benthic algae and other community components, 

ongoing since 2005. knb-lter-mcr.8.32. 

doi:10.6073/pasta/0bf200e9e0f099de69826f57b18ff3da 

Casella, E., A. Collin, D. Harris, S. Ferse, S. Bejarano, V. Parravicini, J.L. Hench, and A. 

Rovere. 2017. Mapping coral reefs using consumer-grade drones and structure from 

motion photogrammetry techniques. Coral Reefs 36: 269-275. 

Chen, Q., O. Beijbom, S. Chan, J. Bouwmeester, and D. Kriegman. 2021. A new deep learning 

engine for CoralNet. International Conference on Computer Vision (ICCV) Workshops 

2021: 3693-3702. 

Collin, A., C. Ramambason, Y. Pastol, and others. 2018. Very high resolution mapping of coral 

reef state using airborne bathymetric LiDAR surface-intensity and drone imagery. Int. J. 

Remote Sensing 39: 5676-5688. 

Colvocoresses, J., and A. Acosta. 2007. A large-scale field comparison of strip transect and 

stationary point count methods for conducting length-based underwater visual surveys of 

reef fish populations. Fish. Res. 85: 130-141. 

Diniz-Filho, J.A.F., L.M. Bini, and B.A. Hawkins. 2003. Spatial autocorrelation and red herrings 

in geographical ecology. Glob. Ecol. Biogeogr. 12: 53-64. 



Edmunds, P., and Moorea Coral Reef LTER. 2022. MCR LTER: Coral Reef: Long-term 

Population and Community Dynamics: Corals, ongoing since 2005. knb-lter-mcr.4.39 

doi:10.6073/pasta/913b1532594fcaf02de7671ed940b4c5 

Estes, L., P.R. Elsen, T. Treuer, L. Ahmen, K. Caylor, J. Chang, J.J. Chol, and E.C. Ellis. 2018. 

The spatial and temporal domains of modern ecology. Nat. Ecol. Evol. 2: 819-826. 

González-Rivero, M., P. Bongaerts, O. Beijbom, and others. 2014. The Catlin Seaview Survey – 

kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquat. 

Conserv. 24: 184-198. 

González-Rivero, M., O. Beijbom, A. Rodriguez-Ramirez, and others. 2016. Scaling up 

ecological measurements of coral reefs using semi-automated field image collection and 

analysis. Remote Sens. 8: 30. doi:10.3390/rs8010030 

González-Rivero, M., O. Beijbom, A. Rodriguez-Ramirez, and others. 2020. Monitoring of coral 

reefs using artificial intelligence: a feasible and cost-effective approach. Remote Sens. 

12: 489. 

Gormley, K., F. McLellan, C. McCabe, C. Hinton, J. Ferris, D.I. Kline, and B.E. Scott. 2018. 

Automated image analysis of offshore infrastructure marine biofouling. J. Mar. Sci. Eng. 

6(1), 2. doi: 10.3390/jmse6010002 

Griffin, K.J., L.H. Hedge, M. González-Rivero, O.I. Hoegh-Guldberg, and E.L. Johnston. 2017. 

An evaluation of semi-automated methods for collecting ecosystem-level data in 

temperate marine systems. Ecol. Evol. 7: 4640-4650.  



Han, X., T.C. Adam, R.J. Schmitt, A.J. Brooks, and S.J. Holbrook. 2016. Response of herbivore 

functional groups to sequential perturbations in Moorea, French Polynesia. Coral Reefs 

35: 999-1009. 

Hedley, J.D., C.M. Roelfsema, I. Chollett, and others. 2017. Remote sensing of coral reefs for 

monitoring and management: a review. Remote Sens. 8: 118. doi: 10.3390/rs8020118 

Hengl, T., P. Roudier, D. Beaudette, and E. Pebesma. 2015. plotKML: Scientific visualization of 

spatio-temporal data. J. Stat. Softw. 63(5): 1-25. 

Hijmans, R.J., E. Williams, and C. Vennes. 2017. Geosphere: spherical trigonometry. R package 

version 1.5-7. URL: https://CRAN.R-project.org/package=geosphere 

Holbrook, S.J., A.J. Brooks, and R.J. Schmitt. 2002a. Predictability of fish assemblages on coral 

patch reefs. Mar. Freshwater Res. 53: 181-188. 

Holbrook, S.J., A.J. Brooks, and R.J. Schmitt. 2002b. Variation in structural attributes of patch-

forming corals and patterns of abundance of associated fishes.  Mar. Freshwater Res. 53: 

1045-1053. 

Holbrook, S.J., J. Wencélius, A.K. Dubel, and others. 2022. Spatial co-variation in nutrient 

enrichment and fishing of herbivores in an oceanic coral reef ecosystem. Ecol. Appl. 32: 

e2515. doi:10.1002/eap.2515 

Houk, P., and R. Van Woesik. 2006. Coral reef benthic video surveys facilitate long-term 

monitoring in the commonwealth of the Northern Mariana Islands: toward an optimal 

sampling strategy. Pac. Sci. 60(2): 177-189. 



Koester, A., V. Migani, N. Bunbury, A. Ford, C. Sanchez, and C. Wild. 2020. Early trajectories 

of benthic coral reef communities following the 2015/16 coral bleaching event at remote 

Aldabra Atoll, Seychelles. Sci. Rep. 10: 17034 

Kulbicki, M., G. Nicolas, and A. Marion. 2005. A general approach to length-weight 

relationships for New Caledonian lagoon fishes. Cybium 29: 235-252. 

Lennon, J.J. 2000. Red-shifts and red herrings in geographical ecology. Ecography. 23: 101-113. 

Levin, S.A. 1992. The problem of pattern and scale in ecology. Ecology 73(6): 1943-1967. 

Lindenmayer, D.B., and G.E. Likens. 2010. The science and application of ecological 

monitoring. Biol. Conserv. 143: 1317-1328. 

Nocerino, E., F. Menna, A. Gruen, and others. 2020. Coral reef monitoring by scuba divers using 

underwater photogrammetry and geodetic surveying. Remote Sens. 12(18): 3036. 

Perkins N.R., S.D. Foster, N.A. Hill, and N.S. Barrett. 2016. Image subsampling and point 

scoring approaches for large-scale marine benthic monitoring programs. Estuar. Coast. 

Shelf Sci. 176: 36-46. 

Pittman, S.J., and K.A. Brown. Multi-scale approach for predicting fish species distributions 

across coral reef seascapes. PLoS ONE 6(5): e20583. 

Pittman, S.J., R.T. Kneib, and C.A. Simenstad. 2011. Practicing coastal seascape ecology. Mar. 

Ecol. Prog. Ser. 427: 187-190. 

Pittman, S.J. 2017. Introducing seascape ecology, p. c3-25. In S.J. Pittman [Ed.], Seascape 

Ecology. Wiley. 



Portelli, R.A. 2020. Don’t throw the baby out with the bathwater: reappreciating the dynamic 

relationship between humans, machines, and landscape images. Landscape Ecol. 35: 815-

822. 

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/ 

Raber, G.T., and S.R. Schill. 2019. Reef rover: a low cost small autonomous unmanned surface 

vehicle (USV) for mapping and monitoring coral reefs. Drones 3(2): 38. 

Rassweiler, A., M. Lauer, S.E. Lester, and others. 2020. Perceptions and responses of Pacific 

Island Fishers to changing coral reefs. Ambio 49: 130-143. doi.org/10.1007/s13280-019-

01154-5 

Richards, B.L., I.D. Williams, M.O. Nadon, and B.J. Zgliczynski. 2011. A towed-diver survey 

method for mesoscale fishery-independent assessment of large-bodied reef fishes. Bull. 

Mar. Sci. 87(1): 55-74. 

Rizzari, J.R., A.J. Frisch, and S.R. Connolly. 2014. How robust are estimates of coral reef shark 

depletion? Biol. Conserv. 176: 39-47. 

Roelfsema, C., and S. Phinn. 2010. Integrating field data with high spatial resolution 

multispectral satellite imagery for calibration and validation of coral reef benthic 

community maps. J. Appl. Remote Sens. 4: 043527. 

Sandel, B. and A.B. Smith. 2009. Scale as a lurking factor: incorporating scale-dependence in 

experimental ecology. Oikos 118: 1284-1291. 



Schmitt, R.J. and S.J. Holbrook. 2007. The scale and cause of spatial heterogeneity in the 

strength of temporal density dependence. Ecology 88: 1241-1249. 

Schmitt, R.J., S.J. Holbrook, S.L. Davis, A.J. Brooks, and T.C. Adam. 2019.  Experimental 

support for alternate attractors on coral reefs. Proc. Natl. Acad. Sci. U.S.A. 116: 4372-

4381. 

Schmitt, R.J., S.J. Holbrook, A.J. Brooks, and T.C. Adam. 2021.  Evaluating the precariousness 

of coral recovery when coral and macroalgae are alternative basins of attraction.  Limnol. 

Oceanogr. 67: S285-S297. doi: 10.1002/lno.11929 

Villon, S., D. Mouillot, M. Chaumont, E.S. Darling, G. Subsol, T. Claverie, and S. Villéger. 

2018. A deep learning method for accurate and fast identification of coral reef fishes in 

underwater images. Ecol. Inform. 48: 238-244. 

Williams, I.D., C.S. Couch, O. Beijbom, T.A. Oliver, B. Vargas-Angel, B.D. Schumacher, and 

R.E. Brainard. 2019. Leveraging automated image analysis tools to transform our 

capacity to assess status and trends of coral reefs. Front. Mar. Sci. 6: 222. 

Zaneveld, J.R., D.E. Burkepile, A.A. Shantz, and others. 2016. Overfishing and nutrient 

pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. 

Commun. 7: 11833 

Table 1. List of individual substrates used in the analysis, along with each substrate’s aggregated 

group and a description.  Only substrates identified by both humans and CoralNet in our 

validation procedure are shown here. 

Individual substrate 
Aggregated 
substrate Description 



Sand Soft substrate Sandy, fine substrate 
Rubble Soft substrate Coral rubble (broken, detached dead coral) 
Hard substrate Hard substrate Hard substrate (dead coral/rock, including crustose 

coralline algae, and low turf-algae) 
Pavement Hard substrate Pavement (low relief hard substrate) 
Turf Hard substrate Longer turfing algae (e.g., damselfish garden) 
Obscured Obscured Unable to see substrate due to it being too dark, 

blurry, or otherwise covered (e.g., by a fish or a 
bubble) 

Dictyota Algae Any algae in the genus Dictyota 
Halimeda Algae Any algae in the genus Halimeda 
Padina Algae Any algae in the genus Padina 
Sargassum Algae Any algae in the genus Sargassum 
Turbinaria Algae Any algae in the genus Turbinaria 
Acropora - branching Coral Coral in genus Acropora showing branching 

morphology 
Acropora Coral Corals in genus Acropora showing other growth 

forms (e.g., tabular) 
Massive Porites Coral Corals in genus Porites showing massive growth 

forms (e.g., Porites lobata) 
Montipora Coral Corals in genus Montipora showing any growth 

form 
Pocillopora Coral Corals in genus Pocillopora (except for those 

identified as P. damicornis) 
Porites rus Coral Corals of the species Porites rus 

 

Table 2. Compilation of mean r2, slope, and intercept from all replicates of each raw substrate 

scored by 8 CoralNet images, 8 human images, 64 CoralNet images. 

 
8 CoralNet 8 Human 64 CoralNet 

Substrate r2 Slope Intercept r2 Slope Intercept r2 Slope Intercept 
Sand 0.928 0.919 1.702 0.920 0.951 1.562 0.965 0.955 0.525 
Rubble 0.806 0.917 1.902 0.799 0.881 1.949 0.891 1.012 0.376 
Hard substrate 0.781 0.806 2.639 0.791 0.874 2.778 0.862 0.889 0.661 
Pavement 0.892 0.993 0.512 0.897 0.945 0.342 0.939 1.038 0.275 
Turf 0.754 1.761 0.116 0.703 0.954 0.081 0.876 1.752 0.073 
Obscured 0.666 0.825 0.949 0.678 0.801 1.238 0.802 0.987 -0.075 
Dictyota 0.674 0.868 0.206 0.602 0.778 0.166 0.822 1.039 0.109 
Halimeda 0.496 0.626 0.109 0.327 0.533 0.104 0.687 0.822 0.068 
Padina 0.946 0.886 0.039 0.928 1.022 0.022 0.976 0.888 0.025 
Sargassum 0.920 1.080 0.032 0.910 0.937 0.109 0.978 1.118 -0.066 
Turbinaria 0.855 0.930 0.728 0.821 0.905 0.724 0.929 1.005 0.193 



Acropora - 
branching 

0.869 0.890 0.103 0.800 0.921 0.153 0.964 0.935 -0.012 

Acropora 0.124 1.975 0.092 0.401 0.348 0.061 0.138 5.616 0.047 
Massive Porites 0.738 0.774 0.553 0.671 0.790 0.662 0.878 0.914 0.081 
Montipora 0.932 1.118 0.143 0.920 0.956 0.072 0.972 1.144 0.091 
Pocillopora 0.304 0.434 0.206 0.160 0.367 0.242 0.565 0.817 0.052 
Porites rus 0.540 0.515 0.089 0.491 0.843 0.112 0.712 0.603 0.020 

 

 

Table 3. Compilation of mean r2, slope, and intercept from all replicates of each aggregated 

substrate scored by 8 CoralNet images, 8 human images, 64 CoralNet images. 

 
8 CoralNet 8 Human 64 CoralNet 

Substrate r2 Slope Intercept r2 Slope Intercept r2 Slope Intercept 
Live Coral 0.821 0.909 0.774 0.794 0.893 0.847 0.926 1.017 0.012 
Macroalgae 0.895 0.961 1.091 0.865 0.902 0.949 0.951 1.017 0.521 
Hard Substrate 0.790 0.804 4.457 0.803 0.871 3.592 0.864 0.878 2.309 
Soft Substrate 0.875 0.869 5.888 0.834 0.891 5.148 0.940 0.932 2.802 
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